Resisting cell death
Sustaining proliferative signaling
A novel human TPIP splice-variant (TPIP-C2) mRNA, expressed in human and mouse tissues, strongly inhibits cell growth in HeLa cells.
Alternative splicing of mRNAs is known to involve a major regulation of gene expression at RNA level in mammalian cells. The PTEN (Phosphatase and TENsin homologue deleted from the human chromosome 10), TPTE (Transmembrane Phosphatase with TEnsin homology) and TPIP (TPTE and PTEN homologous Inositol lipid Phosphatase) belong to a family of dual-specific lipid and protein phosphatases. PTEN is a well characterized tumor suppressor, which plays crucial role in cell survival, cell cycle regulation, cell proliferation as well as adhesion, motility and migration of cells. The C2-domain of PTEN is essential for PTEN-functions. We have isolated a novel 1019 bp human TPIP cDNA (TPIP-C2) from a human testis cDNA library. In silico analysis of the cDNA revealed that it is produced from the TPIP-locus on the human chromosome 13 by alternative RNA-splicing. It has a unique 5'-Alu sequence, a LINE sequence followed by a 582 bp Open Reading Frame (ORF) encoding a 193 aa polypeptide with a partial phosphatase domain and a C2-domain. TPIP-C2 mRNA is expressed in human testis and in mouse tissues. Mouse testis and brain showed higher levels of TPIP-C2 mRNA in comparison to the heart, liver and kidney under normal physiological conditions. TPIP-C2 mRNAs from human and mouse testes show extensive sequence identity. Over-expression of TPIP-C2 cDNA in HeLa cells strongly (up to 85%) inhibited cell growth/proliferation and caused apoptosis in a caspase 3-dependent manner. These findings suggest for the first time that a TPIP splice-variant mRNA with a partial phosphatase domain and a C2-domain is expressed in cells and tissues of human and murine origins under normal physiological conditions. Inhibition of cell growth/proliferation and induction of apoptosis by overexpression of TPIP-C2 mRNA in HeLa cells suggest that it may be involved in negative regulation of cell growth/proliferation.